
DocBook to XHTML i

DocBook to XHTML

DocBook to XHTML ii

COLLABORATORS

TITLE :

DocBook to XHTML

ACTION NAME DATE SIGNATURE

WRITTEN BY Jordi Fita February 6, 2018

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

29081e152caf 2011-05-31 Added the ’notranslate’ class to the code’s div
output in db2html.

jfita

34b7522b4f97 2011-03-28 atangle is now using a new style for directives
which don’t collide with XML tags. I had to
update all games and programs as well in order
to use the new directive syntax.

jfita

6cc909c0b61d 2011-03-07 Added the comments section. jfita

a43774cb5c70 2011-01-25 db2html now takes into account XML
idiosyncrasies.

jfita

3afa2eb8824f 2010-11-12 Fixed missing tokens from lexer in db2html. jfita

2d89308d5f16 2010-11-10 Fixed a problem with double end of line values in
db2html’s literate programming filter.

jfita

d1e8f7703f36 2010-11-10 Corrected the literate programming directive’s
regexp to include the dot character.

jfita

8c7d8f36c874 2010-10-30 Fixed a typo. jfita

a643bad18ca3 2010-10-28 Fixed a typo in db2html. jfita

ec13c85db550 2010-10-27 Added a missing source style to db2html.txt jfita

DocBook to XHTML iii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

30b4b6244050 2010-10-27 Added the filter for atangle’s directive to db2html. jfita

e3241d8e1dc9 2010-10-25 Added the AsciiDoc’s homepage’s link to
db2html.

jfita

05a1b32f8b4a 2010-10-22 The appendix sections now aren’t actual
appendix when making a book.

jfita

0ab76df46149 2010-10-20 Added the download links. jfita

9efbebdaa6ab 2010-10-19 Fixed an unused ’tmp’ variable in db2html’s
print_error function.

jfita

1e5328a5ed6b 2010-10-18 Added the credits appendix to db2html. jfita

c0dd2ea1b7d8 2010-10-18 Added db2html, a python script to convert from
DocBook to XHTML using xsltproc’s XSL process
and adding pygments’ syntax highlighting.

jfita

DocBook to XHTML iv

Contents

1 Introduction 1

1.1 Syntax highlighting implementation in DocBook stylesheets . 1

2 Implementation of a custom highlight function 1

2.1 Highlighting Literate Programming Directives . 2

3 Applying an XSLT stylesheet 4

4 Getting the document and XSLT stylesheet 4

5 Shebang 5

6 db2html.py 5

A Using db2html.py 5

B License 6

C Credits 6

D Download 6

DocBook to XHTML 1 / 6

1 Introduction

Since version 1.70, the DocBook XSL stylesheets use the standard xslthl as syntax highlighter for elements that support highlight-
ing: programlisting, screen, and synopsis. Unfortunately, the xslthl is very limited in both supported languages as
well as in its highlight capabilities. Moreover, its implementation is in Java an therefore it only works with Java XSL processors
like Saxon, which is slower.

One possible alternative to xslthl is Pygments, however its is written in Python and thus not supported by any XSL processor.

DocBook to XHTML or db2html is a manual implementation of a XSL processor that uses Pygments for syntax highlighting.

1.1 Syntax highlighting implementation in DocBook stylesheets

In these stylesheets, syntax highlighting is performed by the template apply-highlighting, defined in highlighting/
common.xsl in the DocBook XSL distribution, to all elements which support support highlighting (programlisting,
screen, and synopsis.) It determines the language to be used for highlighting from the element’s language attribute,
extracts the content nodes and eventually calls the XPath function highlight with these parameters. The function is looked
up, in order, in three different namespaces:

1. s6hl (http://net.sf.xslthl/ConnectorSaxon6)

2. sbhl (http://net.sf.xslthl/ConnectorSaxonB)

3. xhl (http://net.sf.xslthl/ConnectorXalan)

If it fails to determine a language or to look up highlight in these namespaces, it simply copies the contents.

The highlight function returns a list of XML and text nodes. XML nodes with the xslthl namespace prefix represent
tokens from the highlighted source code. For instance, there are keyword and comment nodes. Refer to the Processing xslthl
results section in the xslthl documentation for more information.

These xslthl nodes are then transformed into proper output format by the format-specific DocBook highlighting stylesheets.
Note that these must explicitly be included in the customization layer.

These observations lead to the conclusion that if we want to use a custom highlighting routine then we must re-implement this
highlight function and put into any of the mentioned namespace. In Python, we can use the lxml package that provides the
same XSLT processing library as xsltproc but that can be extended with custom functions:

<<define custom highlight function>>=
xhl = etree.FunctionNamespace(’http://net.sf.xslthl/ConnectorXalan’)
xhl.prefix = ’xhl’
xhl[’highlight’] = html_highlight

This adds the namespace http://net.sf.xslthl/ConnectorXalan with the prefix xhl to the global list of functions
namespaces maintained by lxml. Then, we add the function html_highlight into the namespace as highlight. Thus
the stylesheet can now call the XPath function xhl:highlight.

In order to be able to use etree, first we must import the lxml package.

<<modules>>=
from lxml import etree

2 Implementation of a custom highlight function

highlight returns special XML nodes which are transformed to proper output by the DocBook stylesheets. Unfortunately,
the highlighting capabilities of xslthl are somewhat limited compared to those of Pygments. When using DocBook’s HTML
stylesheet, it is possible to abandon xslthl and use the Pygments formatter.

http://sourceforge.net/apps/mediawiki/xslthl/index.php?title=Main_Page
http://pygments.org/
http://sourceforge.net/apps/mediawiki/xslthl/index.php?title=Processing_xslthl_results
http://sourceforge.net/apps/mediawiki/xslthl/index.php?title=Processing_xslthl_results
http://sourceforge.net/apps/mediawiki/xslthl/index.php?title=Main_Page
http://codespeak.net/lxml/

DocBook to XHTML 2 / 6

<<pygments html highlighter>>=
def html_highlight(context, language, code, config):

"""
Highlight the given ‘‘code‘‘ in the given ‘‘language‘‘. ‘‘context‘‘ is
the XPath context in which this function was applied. ‘‘config‘‘ is
ignored.

Return a list of HTML nodes containing the highlighted code.
"""
if not code:

code = context.context_node.xpath(’.//text()’)
lexer = get_lexer_by_name(language[0].lower())
<<add atangle filter to lexer>>
html = highlight(code[0], lexer, HtmlFormatter(nowrap=True))
highlight_div = fragment_fromstring(html, create_parent=True)
highlight_div.set(’class’, ’pygments_highlight notranslate’)
return [highlight_div]

This code uses the HTML Formatter to render the source code to HTML. This HTML code is then parsed using lxml.html. As
the stylesheets already wrap highlighted elements in pre tags, nowrap is specified to avoid Pygments wrapping them again.
Instead, the returned tokens are wrapped in a simple div element.

I don’t want Google translator to modify the contents of the code, because otherwise they become too mangled to understand.
That is why besides the pygments_highlight class, I also added the notranslate class to the div output.

We also need to import the packages from pygments;

<<modules>>=
from pygments import lex, highlight
from pygments.formatters import HtmlFormatter
from pygments.lexers import get_lexer_by_name
from pygments.token import Token

As well as the fragment_fromstring from the lxml package.

<<modules>>=
from lxml.html import fragment_fromstring

2.1 Highlighting Literate Programming Directives

When using literate programming to create the source code blocks to highlight, besides the regular code in the language specified
in the language attributes, there are special directives used for tangle programs such as atangle to extract these code blocks
and write a complete source code module.

Obviously, these directives aren’t part of the target language, otherwise the tangle program would confuse them for directives
and instead of outputting the source code it would try to satisfy the reference. Nevertheless, Pyments is unable to detect
that particular use and tries to highlight the directives using the language lexer. Occasionally, that means that the labels gets
highlighted as keywords — such as when using for or while inside the directive — or as errors.

Fortunately, Pygments has a method to attach filters to the lexer and perform additional modification to the lexer’s output.
Usually this filters are used to complement the lexer by highlighting additional keywords or special strings inside comments,
such as TODO, XXX, etc.

In this case I’ll use the filter architecture to detect atangle directives and inform the formatter to render them as labels instead
of whatever the lexer believed it to be.

The filter, then, needs to look line by line and check whether a line is either a regular source code or an atangle directive.
Given the nature of atangle directives, this can be accomplished using a regular expression.

<<atangle regex>>=
self.directive = r’’’^\s*<<(*|[-\w\s\.]+)>>=?\s*$’’’

http://pygments.org/docs/formatters/#htmlformatter
http://codespeak.net/lxml/lxmlhtml.html
http://en.wikipedia.org/wiki/Literate_programming
http://www.geishastudios.com/literate/atangle.html

DocBook to XHTML 3 / 6

To use regular expressions the script needs to import the re module.

<<modules>>=
import re

This directive matches both the declaration directive, that starts a new atangle code snippet, as well as reference directives.
Inside the filter, thus, we need to build an string until we match the end of line, either \n or \r, and then check against this
regular expression. If the expression matches, then return the string as a label token. Otherwise, output whatever the lexer gave
to the filter.

In some cases, Pygmens passes an string with double end of line characters, such as when it find an invalid syntax. To get these
cases into account, I look for a value whose first character is either \n or \r instead of looking at the whole string.

Also, in some languages, notably XML, since the < and > characters are part of the language itself, Pygmens also tends to give
the = as a separate value. Then, I also need to check for this character at first value’s position.

<<atangle filter>>=
class AtangleFilter(Filter):

def __init__(self, **options):
Filter.__init__(self, **options)
<<atangle regex>>

def filter(self, lexer, stream):
lexer_input = []
line = ""
for ttype, value in stream:

if len(value) > 0 and (value[0] == ’\n’ or value[0] == ’\r’ or value[0] == ’=’) ←↩
:
if re.match(self.directive, line):

yield Token.Name.Label, line
else:

for original_ttype, original_value in lexer_input:
yield original_ttype, original_value

The end of line also needs to be there.
yield ttype, value
start with the next line.
lexer_input = []
line = ""

else:
lexer_input.append((ttype, value))
line = line + value;

It is also necessary to yield any buffered values from the lexer. This is to avoid losing tokens when there is no line that starts with
a newline character and thus the original tokens would never be yielded.

<<atangle filter>>=
for ttype, value in lexer_input:

yield ttype, value

AtangleFilter class derives from Filter which is defined in the Pygments package.

<<modules>>=
from pygments.filter import Filter

The only thing that remains is to tell the lexer to use this filter. This is done calling add_filter with the lexer.

<<add atangle filter to lexer>>=
lexer.add_filter(AtangleFilter())

DocBook to XHTML 4 / 6

3 Applying an XSLT stylesheet

Once we have the custom HTML syntax highlighter function, we now just need to apply an XSLT stylesheet to the DocBook
document. We output the transformation’s result directly to the standard output using the print function. We return the error
log, if any, of applying the transformation.

<<apply xsl stylesheet>>=
def apply_xslt(stylesheet, document):

"""
Transform ‘‘document‘‘ using the given ‘‘stylesheet‘‘. Both
must be lxml element trees.

Return the error log of the transformation.
"""
Register extension function for highlighting
<<define custom highlight function>>

perform transformation
transform = etree.XSLT(stylesheet)
print transform(document)
return transform.error_log

We also need a function to print the error log. This function just prints out each error in a human readable form to the standard
error.

<<print transformation errors>>=
def print_errors(errors):

for error in errors:
if error.type == etree.ErrorTypes.ERR_OK:

succes, so just print the message
tmpl = ’{0.message}’

else:
print filename and columns
tmpl = (’{0.level_name}:{0.filename}:{0.line},{0.column}: ’

’{0.message} ({0.type_name})’)
print >> sys.stderr, tmpl.format(error)

For this to work, we need to sys package:

<<modules>>=
import sys

4 Getting the document and XSLT stylesheet

The last thing we need is to read and parse the actual DocBook document and the XSLT stylesheet. We’ll get these two from
the user as command line parameters. Following the example of xsltproc, we will expect the first parameter to be the XSLT
stylesheet and the second the DocBook document. We also need to call the xinclude() once we’ve parsed the DocBook
document in order to include any possible referenced XML file as part of the document.

<<read and parse documents>>=
def main():

if len(sys.argv) < 3:
print >> sys.stderr, ’missing arguments’
return 1

elif len(sys.argv) > 3:
print >> sys.stderr, ’too many arguments’
return 1

xslt_file, xml_file = sys.argv[1:]

DocBook to XHTML 5 / 6

document = etree.parse(xml_file)
document.xinclude()
stylesheet = etree.parse(xslt_file)
print_errors(apply_xslt(stylesheet, document))

This main function will be the first function called and the one that drives all the transformation. Thus, if this module is not
included, we just need to call it.

<<read and parse documents>>=
if __name__ == ’__main__’:

try:
sys.exit(main())

except KeyboardInterrupt:
pass

5 Shebang

In order to allow the Python program to work as an executable file, we must add the traditional shebang line at the beginning.

We assume that the python interpreter is installed and accessible from the environment’s PATH. We also specify that the source
code is written in UTF-8.

<<shebang>>=
#!/usr/bin/env python
-*- coding: utf-8 -*-

6 db2html.py

A simple Python script will incorporate all the elements we defined in the previous sections in the correct order:

<<*>>=
<<shebang>>
<<license>>
<<modules>>

<<atangle filter>>

<<pygments html highlighter>>

<<apply xsl stylesheet>>

<<print transformation errors>>

<<read and parse documents>>

A Using db2html.py

In order to use db2html.py we need a customization layer to enable the highlighting as well as to include Pygment’s CSS
stylesheet:

<<xhtml.xsl>>=
<?xml version=’1.0’?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

DocBook to XHTML 6 / 6

<xsl:import href="http://docbook.sourceforge.net/release/xsl/current/xhtml/docbook.xsl"/>
<xsl:import href="http://docbook.sourceforge.net/release/xsl/current/xhtml/highlight.xsl"/ ←↩

>
<xsl:param name="html.stylesheet">highlight.css</xsl:param>
<xsl:param name="highlight.source" select="1"/>

</xsl:stylesheet>

To generate the stylesheet use pygmentize:

pygmentize -S friendly -f html > highlight.css

Invoke db2html.py passing the XSLT stylesheet and the DocBook document. In this example, we assume that xhtml.xsl is
the customization layer and db2html.xml the DocBook document:

db2html.py xhtml.xsl db2html.xml

B License

This program is distributed under the following license:

<<license>>=
Copyright (c) 2009, 2010 Sebastian Wiesner <lunaryorn@googlemail.com>
Copyright (c) 2010 Jordi Fita <jfita@geishastudios.com>

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

C Credits

Most of this document’s contents and source code is a straight copy with slightly modifications from Pygments as syntax high-
lighter for DocBook documents written by Sebastian Wiesner.

D Download

The tangled Python source file is available at:

http://www.geishastudios.com/download/db2html.py

Also, for those interested in the AsciiDoc document, the latest version is always available at:

http://dev.geishastudios.com/literate/src/tip/db2html.txt

http://lunaryorn.de/articles/docbook_pygments.html
http://lunaryorn.de/articles/docbook_pygments.html
mailto:lunaryorn@googlemail.com
http://www.geishastudios.com/download/db2html.py
http://www.methods.co.nz/asciidoc/
http://dev.geishastudios.com/literate/src/tip/db2html.txt

	Introduction
	Syntax highlighting implementation in DocBook stylesheets

	Implementation of a custom highlight function
	Highlighting Literate Programming Directives

	Applying an XSLT stylesheet
	Getting the document and XSLT stylesheet
	Shebang
	db2html.py
	Using db2html.py
	License
	Credits
	Download

