
atangle i

atangle

atangle ii

COLLABORATORS

TITLE :

atangle

ACTION NAME DATE SIGNATURE

WRITTEN BY Jordi Fita February 6, 2018

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

8c8df57a6f06 2011-08-20 Moved the download links for atangle to big
buttons.

jfita

34b7522b4f97 2011-03-28 atangle is now using a new style for directives
which don’t collide with XML tags. I had to
update all games and programs as well in order
to use the new directive syntax.

jfita

6cc909c0b61d 2011-03-07 Added the comments section. jfita

d5cc1bcb5948 2010-10-28 The correct source language for Makefiles is
make.

jfita

854feca7a1b6 2010-10-27 Added the source style and thus highlighting to
the Makefile.

jfita

658793e2ad92 2010-10-25 Added the Makefile to atangle. jfita

e752ea890166 2010-10-22 atangle’s license is now longer syntax
highligthed.

jfita

05a1b32f8b4a 2010-10-22 The appendix sections now aren’t actual
appendix when making a book.

jfita

0ab76df46149 2010-10-20 Added the download links. jfita

a47b37b23119 2010-10-19 Fixed while block’s indentation. jfita

atangle iii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

24c420624034 2010-10-18 Reworded some paragraphs that were difficult to
understand.

jfita

38abe4173b21 2010-10-18 Fixed typo in atangle.txt. jfita

8fcc5ea10635 2010-10-18 Changed atangle’s main source file description. jfita

91aaff328f42 2010-10-18 Merged the options section of atangle inside the
root snippet’s description.

jfita

1ac07ccc50b2 2010-10-18 Atangle’s license is now an appendix. jfita

b8cefc9d0ec4 2010-10-18 atangle now supports dots (’.’) as snippets’ name. jfita

fb94ebbd979d 2010-10-15 Added a missing source tag to atangle. jfita

3eb59ece1e5c 2010-10-14 Added the root snippet options to atangle. jfita

1f0c91d3ebab 2010-10-14 atangle now can load documents from files. jfita

84f0fad36ff1 2010-10-14 I’ve reworded most of atangle. I also changed the
main to be a standalone function and uses
AWeb.ATangle as an object instead of a bunch of
functions.

jfita

f65df20b9ff8 2010-10-14 atangle’s references now can contain spaces. jfita

ff481182607e 2010-10-14 Fixed typo in atangle. jfita

8af0238ef205 2010-10-13 "Fixed" a line too long. jfita

d25a52536ad7 2010-10-13 Remplaced the code filter to source filter in
atangle.

jfita

fff0e129835f 2010-10-13 Added the functional atangle application written
in aweb.

jfita

atangle iv

atangle v

Contents

1 Introduction 1

2 Literate Programming Blocks 1

2.1 Directives . 1

3 Collecting code snippets 1

3.1 Storing the snippets . 2

4 Output 3

5 Input Document 4

6 The program’s structure 5

A Makefile 5

B License 6

atangle 1 / 7

1 Introduction

atangle is a simple literate programing tool intended to extract blocks of source code, or code snippets, from literate programs
written using AsciiDoc, and then reorder the snippets into source code modules suitable to be feed into a compiler and produce
a binary application or library.

2 Literate Programming Blocks

In every literate application there are two kinds of blocks: documentation blocks and code blocks.

The documentation block is the main text with which the logic and decisions taken during the development of the program are
explained in enough detail for a human being to understand completely.

Between the documentation blocks there are code blocks, also called code snippets, in where the programmer writes the actual
compilable code. Each of these snippets has a name that can be used within other snippets as references.

Once atangle has extracted all code snippets from the input file, it starts writing out each line of the root snippet, by convention
named *, replacing every reference by the snippet’s contents. In turn, the references in the referenced snippet are also recursively
replaced until all references are resolved. The output of atangle is thus a valid source module as the compiler or interpreter
expects it to be written.

To embed code snippets within the documentation, we will write the code inside AsciiDoc’s listing blocks, which consist of any
number of lines between two delimiters. The two delimiters are identical lines, usually four dashes, one at the beginning and
one at the end of the block. When rendering, AsciiDoc simply copies the contents of any listing block without formating and
therefore are the ideal place to write the snippets, since AsciiDoc will still render the blocks correctly without the use of any
other tool.

Besides the actual code, in order to identify a listing block as a valid code snippet, the first line must be a directive that assigns a
name to the snippet.

2.1 Directives

While scanning a listing block, atangle looks for the following recognized directives:

• The default root code snippet definition-extension: <<*>>=

• A named code snippet definition-extension: <<name>>=

• A named code snippet reference: <<name>>

3 Collecting code snippets

In order to find the code snippets atangle will read each input’s line and look for the start of an listing block. We will use
AsciiDoc’s default starting block markup of four dashes (----) although it is possible to change AsciiDoc’s configuration to
use a different markup.

As we are reading the AsciiDoc document line by line, we can use FileStream’s read_line() member function. This
function strips out the end of line character from the returned string and when it reaches the end of the stream it returns null.
Therefore just checking the string’s nullity we know when to stop without a call to eof().

http://www.methods.co.nz/asciidoc/

atangle 2 / 7

<<look for listing blocks>>=
public void process_document(GLib.FileStream input) {

string line = input.read_line();
while (line != null) {

if (line == "----") {
process_listing_block(input);

}
line = input.read_line();

}
}

Once we have identified a listing block, we must make sure this is a valid code snippet by looking at the first line for the named
snippet definition-extension directive. We can express this directive using a regular expression, but summarizing the directive has
a name part, which can’t be empty, in between angle brackets (<< and >>) followed by the definition-extension action identified
by a single equal sign at the end (=).

In Vala the regular expression becomes:

<<web definition-extension directive regexp>>=
web_definition_extension = new GLib.Regex("^<<(*|[-\\s\\w\\.]+)>>=\\s*$");

If the first listing block’s line matches the definition-extension directive, then we can get the snippet’s name from the first
subexpression group. Otherwise, we just ignore this listing block.

<<process listing block>>=
private void process_listing_block(GLib.FileStream input) {

GLib.MatchInfo nameMatch;
string line = input.read_line();
if (line == null) {

return;
}
if (!web_definition_extension.match(line, 0, out nameMatch)) {

return;
}
string name = nameMatch.fetch(1);

Each snippet is nothing but a list of lines where each line is either the actual code that we want to compile or a reference to
another snippet. Since the number of lines that a snippet can have is arbitrary, we store the snippet as a dynamic list of strings.

<<snippet class definition>>=
class AWeb.Snippet: Gee.ArrayList<string>{}

Therefore, for each snippet we just read from the input stream and store each line to the list, except for the first line, which is the
snippet’s name directive, and the last line, which marks the end of the listing block.

<<process listing block>>=
Snippet snippet = new Snippet();
line = input.read_line();
while (line != null && line != "----") {

snippet.add(line);
line = input.read_line();

}

3.1 Storing the snippets

Since later we need to refer to the code snippets by name the most natural way of storing the snippets is by using a dictionary
data structure. In Vala, the best solution is to use a HashMap where the key is the snippet’s name and the value its lines.

atangle 3 / 7

<<snippets dictionary>>=
private Gee.HashMap<string, Snippet> snippets =

new Gee.HashMap<string, Snippet>();

Once we extracted the snippet from the listing block, we must append the snippet’s contents if there is already another snippet
with the same name. Otherwise, we just add the snippet to the dictionary.

<<process listing block>>=
if (snippets.has_key(name)) {

snippets[name].add_all(snippet);
} else {

snippets.set(name, snippet);
}

}

4 Output

With all the snippets collected inside the snippets dictionary, we are now able to output the actual source code in the proper
order starting from the root snippet. Usually, the root snippet is identified by * (asterisk.)

The nature of printing snippets is recursive. For each line of the snippet, we must analyze if the line is a reference directive, in
which case we must retrieve the referenced code snippet and recursively resolve any references within, or is not a directive, in
which case we just print it.

An reference directive is a line whose content’s is just a snippet’s name is delimited by angle brackets, optionally preceded by
spaces. This can be described by the following regular expression.

<<web reference directive regexp>>=
web_reference = new GLib.Regex("^(\\s*)<<([-\\s\\w\\.]+)>>\\s*$");

Notice how we must get the space in front of the reference to be able to set the correct indentation when printing the dereferenced
lines of code. We, therefore, need to start from the root snippet without any indentation at all.

By default, the root snippet is named * (asterisk), but there is a command line option to specify a different root snippet. This is
useful, for example, when we are working with C++ modules and we have different root snippets for the header and the actual
code module.

We will create a new Options class that only have attributes members to be used as references to the GLib.OptionEntry.
Currently, the only option available is the root_snippet string.

<<command line parameters>>=
public class Options: GLib.Object {

public static string root_snippet = null;
}

const GLib.OptionEntry[] options = {
{ "root-snippet", ’r’, 0, GLib.OptionArg.STRING, ref Options.root_snippet, "The name of ←↩

the root snippet", "name"},
{ null }

};

Then, we just need to create a new OptionContext and parse the arguments passed in the command line options. If the -r
options is passed, then the root snippet’s name gets stored in Options.root_snippet.

<<parse command line>>=
var context = new GLib.OptionContext("<document>");
context.add_main_entries(options, null);
try {

context.parse(ref args);

atangle 4 / 7

}
catch (GLib.OptionError e) {

stderr.printf("\n%s\n\n", e.message);
stderr.printf("%s", context.get_help(true, null));
return -1;

}

If the root snippet is not specified, then Options.root_snippet is left to null and we use the default name of * (asterisk.)

<<dereferencing root snippet>>=
atangle.print_snippet(Options.root_snippet ?? "*", "", stdout);

Notice how the indent parameter is an empty string to start without indentation. Then, as we print each line and resolve
references we need to append the reference’s indentation before resolving.

<<print snippet>>=
public void print_snippet(string name, string indent, GLib.FileStream output)
{

if (snippets.has_key(name)) {
foreach(string line in snippets[name]) {

GLib.MatchInfo referenceMatch;
if (web_reference.match(line, 0, out referenceMatch)) {

print_snippet(referenceMatch.fetch(2), indent +
referenceMatch.fetch(1), output);

} else {
output.printf("%s%s\n", indent, line);

}
}

}

We should also warn whenever we try to use an unknown reference.

<<print snippet>>=
else {

stderr.printf("Unknown reference: %s\n", name);
}

}

5 Input Document

atangle can read the document either from the standard input or from a file. From the point of view of Vala, both are instances of
FileStream.

To know whether we must read from the standard input or a file, we will use the parameters passed to main. If after parsing
the command line options, there is any parameter, besides the first parameter which is the call to the application, we assume that
parameter is the file we should read from instead of the standard input.

<<main>>=
<<command line parameters>>
int main(string[] args) {

<<parse command line>>
unowned FileStream input = GLib.stdin;
GLib.FileStream file;
if (args.length > 1) {

file = GLib.FileStream.open(args[1], "rt");
if (file == null) {

stderr.printf("Couldn’t open ’%s’\n", args[1]);
}
input = file;

atangle 5 / 7

}
AWeb.Atangle atangle = new AWeb.Atangle();
atangle.process_document(input);
<<dereferencing root snippet>>
return 0;

}

6 The program’s structure

The final program looks like this:

<<*>>=
/*

atangle - Extracts and sorts the code snippets from aweb documents.
Copyright 2010 Jordi Fita <jfita@geishastudios.com>

<<license>>

*/

<<snippet class definition>>
class AWeb.Atangle: GLib.Object {

<<snippets dictionary>>
private GLib.Regex web_definition_extension;
private GLib.Regex web_reference;

public Atangle()
{

<<web definition-extension directive regexp>>
<<web reference directive regexp>>

}

<<look for listing blocks>>
<<process listing block>>
<<print snippet>>

}

<<main>>

A Makefile

Being a simple application, an small Makefile would be sufficient to build and link atangle from the source document.

The first thing that needs to be done is to extract the Vala source code from the AsciiDoc document using atangle itself. It is
necessary, therefore, to have a prebuilt version of atangle to extract its source code.

<<extract vala source code>>=
atangle.vala: atangle.txt

atangle $< > $@

Even though it is possible to compile and build directly the atangle executable, in order to avoid a dependency to Vala’s
compiler when distributing the source code, it is custom to generate the C source from the Vala’s. In this case, I need to use the
gee-0.8 package because atangle uses ArrayList and HashMap, which belong to this package.

<<generate C source code>>=
atangle.c: atangle.vala

valac --pkg gee-0.8 -C -o $@ $<

atangle 6 / 7

Finally is possible to link the executable from the generated C source code. Although, I have to take into account the platform
executable suffix. For Linux and other UNIX systems, the suffix is the empty string, but for Windows I need to append .exe to
the executable.

To know which system is the executable being build, I’ll use the uname -s command, available both in Linux and also in
MinGW or Cygwin for Windows. In this case, I only detect the presence of MinGW because I don’t want to add yet another
dependency to Cygwin’s DLL.

<<determine executable suffix>>=
UNAME = $(shell uname -s)
MINGW = $(findstring MINGW32, $(UNAME))

Later, I just need to check if the substring MINGW is contained in the output of uname. If the findstring call’s result is the
empty string, then we assume we are building in a platform that doesn’t have executable suffix.

<<determine executable suffix>>=
ifneq ($(MINGW),)
EXE := .exe
endif

With this suffix, I can now build the final executable. In this case, I need to link against glib-2.0, which is a dependency for
every Vala application, and gee-0.8, as already explained.

<<build atangle executable>>=
atangle$(EXE): atangle.c

gcc -o $@ $< ‘pkg-config --cflags --libs glib-2.0 gee-0.8‘

Sometimes, it is necessary to remove the executable as well as the intermediary building artifacts. For this, I’ll add a target named
clean that will build all the files built by the Makefile and only left the original document. I have to mark this target as PHONY
in case there is a file named clean in the same directory as the Makefile.

<<clean build artifacts>>=
.PHONY: clean

clean:
rm -f atangle$(EXE) atangle.vala atangle.c

As the first defined target is the Makefile’s default target, I’ll place the executable first and then the dependences until the original
document. After all source code targets, I’ll put the clean target. This is not required, but a personal choice. The final Makefile’s
structure is thus the following.

<<Makefile>>=
<<determine executable suffix>>

<<build atangle executable>>

<<generate C source code>>

<<extract vala source code>>

<<clean build artifacts>>

B License

This program is distributed under the terms of the GNU General Public License (GPL) version 2.0 as follows:

<<license>>=
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2.0 as

atangle 7 / 7

published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

	Introduction
	Literate Programming Blocks
	Directives

	Collecting code snippets
	Storing the snippets

	Output
	Input Document
	The program's structure
	Makefile
	License

